Answers of Homework of Lecture 6-7 for Reference

Theorem 6.8 (Properties of ®(z,7,)) (Homework)
1) ®(t,1,) =)D '(¢,) =YY '(t,);
2) Ot t,) =D, t)D(,,t,);
3) @7(t,t,)=D(¢,,1);
4) x(t,t,,x,)=D(t,¢,)x,
Proof. 1) Since ®(#,¢,) and ®(¢) are both fundamental matrix solutions of
x"= A(t)x, there exists a nonsingular matrix C such that
D(1,t,) =D()C.
Moreover, ®(¢,,t,)=1. Then I=®(t,)C,ie. C=®d'(t,). Therefore,
D(t,t,) = DD (¢,).

It is the same to show that ®(z,z,) = W ()¥ ' (¢,)-
2)Basedon 1), V¢, t,,t, el, ®t)=DO)D " (t,)D(t,)P ' (t,)=D(1,t,)D(t,,1,) .
3) Vg, el, @' (¢t,,t) ={®(,)D (1)) = PP ' (¢,) = D(t,2,)-
4) Since the solutions x(t, ¢,,x,) and ®(z,t,)x, satisfy

X(ty,ty, Xg)=x, =D(t,,1,)x,,

it implies that x(¢,¢,, x,) = ®(¢,¢,)x, by uniqueness. O

1. Show that x= A(t)x+h(t) has only n+1 linearly independent solutions,

where /(¢) is not identically zero on /; A(t) and Ah(¢) are continuous on

I.

Proof. Since A(t) and A(f) are continuous on [/ , there exists a basis

{x;(0),tel}eQ, j=1,2,---,n for x=A(t)x. Suppose that x(¢) is a particular



solution of x = A(#)x + h(t) , which is guarantied by the variation of constant, i.e.

x(t) =0(0)[ @7 (s)h(s)ds.
Then x,(H)+x(t)(j=1,2,---,n)are n solutions of x=A()x+h(t) by Superposition
Principle. Therefore, we have obtained n+1 solutions of x = A(f)x+ A(¢) given by

x,(O+x(t) (j=12,---,n)and x(1), tel.

We are going to show them linearly independent on /. If

ch(xj(t)+x(t)+cn+1x(t)EO for tel

Jj=0
n+l n
e Do xn==Dcx ).
j=0 Jj=1
n+l n+l n
If ¢, #0, we have x(t)=—{> c,}7' > c,x,(). This yields that x(r)eQ by
Jj=0 j=0 Jj=1

Superposition Principle, which is not possible unless /4(¢) =0. This is a contradiction.
n+l n

This contradiction implies ZC ;=0.Then, ) ¢, x,(1)=0 for rel.Since {x,(?)}
Jj=0 j=1

is a basis of Q by assumption, it yields ¢, =c,=--=c¢,=0. Then we have

n+l

c,,=0 by ch =0. It therefore concludes that {x ,(1)+x(s)} and x(z) are
=0

linearly independent. The existence is shown.
Next we show the “only”. We show it by contradiction. If there exist n+2

linearly independent solutions ¢,(¢) , @,(¢), -, ¢@,,,(t) of Xx=A(t)x+h(t) for
tel.Then
X O =¢,)=py@), x,()=0,O)=@,(0) s, x,,()=0,,()—@,@)

are n+1 solutions of x=A(t)x for tel by Superposition Principle. Since
x=A(t)x has only n dimension, then any n+1 solutions, including x,(¢),
x,(¢),-++,x,,,(t) must be linear dependent on #</ by the fundamental theorem.

Then, there exist ¢ ; (j=1,---,n+1), not all zero, such that



n+l

Zc_/.xj(t) =0, tel.
j=1

That is,
n+l n+l
Dc0,(0 2 e} (n=0, rel.
Jj=1 Jj=1
n+l el
Denote ¢, =—Zc ;- The above equation is now Zc 9;(0)=0, tel. In which,
j=1 =

{c,} (j=0,1---,n+1) are not all zero. It shows by definition that ¢,(7),
@,(t),-, ¢, (t) are linearly dependent on fe/. This is a contradiction to the

assumption. Therefore, x=A(f)x+h(t) hasonly n+1 linearly independent solutions

on te/.The proofis finished. o

2. Show that the IVP
x=AM)x+ f(t,x), x(t,)=x,
and the integral equations

x(1) = @)D (t,)x, + q)(t)J-;0 ®7'(5) f(s,x(s))ds
are equivalent. That is, they have the same set of solutions, where ®(¢) is a
fundamental matrix solution of x = A(¢)x, where A(¢) is continuous on / and
f(t,x) is continuouson /xR".
Proof. Suppose that x =¢@(¢) is a continuous solution of the integral equations, then,
o(t,)=x, and

P()= DO (1,)x, + [ DO () (s. p(s))ds.
Since ¢(t) is continuous and ®'(¢)f(t,¢(t)) is continuous, we conclude that

@(t) is differentiable. Taking derivative of ¢ on both side of the integral equations

yields
@)= (D (t,)x, + I: D)D" (5) f (5, 0(s)) ds + DD (1) f (2, (1))



= ADDOO™(1,)x, + D OO (5)/ (5,9(s)ds + /(1. p(0)
= ADIPOP (1)x, + | DOO () (s p(s))ds} + /(2. 9(0)
= ADP(0) + [ (1. p(0)
Therefore, x=g(f) is a solution of %= A()x+ f(t,x) with @(t,)=x,.
Conversely, suppose that x=g(f) is a solution of x= A(f)x+ f(t,x) with
o(t,) = x,. It needs to show
Pl1) = DO (1), + | DOD )/ (5.0(5)) ds
S O OPD) =0 (1)x, + [ O (s)f (s.0()ds:
& O OPD) -7 (1)x, = [ () f (s.0(s)ds:
& ' 0e0),=[ () (s.0()ds.

The last equation can be obtained by integrating {®'(£)p(t)} = D' (¢) 1 (t, (1))
from ¢, to f.
Since
@7 (1)} =07 () (1) +{0 (1)} p(0),
in which we need to get the expression of {®'(¢)}’. To this end, it yields first
0={D@O)D" (1)} = ' (NP (1) + D)D" (1)},
from the above equation, we have

(@7 () == (OD'(ND (1) = -D ' (1) A(7).
Then,

@7 (Dp)} =27 (e (1) +{07 (1)} p(1)
=7 ()¢ (1)~ 07 (D ANP(t) = D (D) {p' () - A)p(t)}
=07 (1) f (1, 9(1)) -

Integrating on both sides of the above equation from ¢, to ¢ yields

@7 (Dp)} =7 (1) f (1, 0(1)).



That is,
— t —
P(1) = DO (1)x,+ [ POO™(5) (5, 0(5)ds
Therefore, x =¢(¢) is a continuous solution of the integral equations. This is the end

of the proof. O

3. (Lecture 7) The “Putzer Algorithm” given below is another method for

computing ¢ when we have multiple eigenvalues:
y n-1
e =2 (0P,
j=0

where P, =1,, P,=(A-2,1, ) A~A, I,)(A-A1,), j=12,-,n, and r(t),

j=1,2,---,n, are the solutions of the first-order linear differential equations and

initial conditions

ri(t)y=A,r(t) with r(0)=1;

ry(t)=A,r,(t)+r () with r,(0)=0;
ri)y=A,r (t)+r, () with r (0)=0.

n—1

n-1
Proof. Denote ®(¢)= Zr m(@OP, . Then, ®(0)= er

Jj=0 J=0

0P, =r(0)P, =1, with

+1

det®(0) =1+ 0. It remains to show that ®(¢) satisfies @'(f)=AD(¢) by uniqueness.

Let r,(rf)=0 for simplicity. Then,

CD!(Z‘) = nz_lr_;Jrl(t)P_/ = nz_l(/ijﬂrjﬂ(t)_i_rj(t))])j .

On the other hand,

n—1

n—1
A=Y 1 (VAP =) r (VA= A, 1 )+ 2,1, }P,
Jj=0 j=0

n—1 n—

1
= zrjﬂ (t)(A - 2‘_/+1]n)Pj + zﬂ‘jﬂrjﬂ (t)P/
j=0

Jj=0

n—1

n-1
= Z(;rjﬂ(t)])jﬂ + Z(;ﬂ’jﬂrj-f—l(t)])j
J= j=



n—1 n—

1
=Y 1 (OP,+ Y. A,r (OP, +7, (0P, + A, ()P,
j=1 j=1

n—1

= 2(2‘_/417/_/41 (t)+rj(t))])j +7,(OP, + (A4, () +1,())F, .

j=1

By Hamilton-Caylay Theorem in Linear Algebra, we know that
Pn = (A _ﬂ’nln)(A_ﬂ’nflln)”.(A_ﬂ’lln) = Onxn *

Therefore,

n—1
V()= Y (2.7, (O +7,(D)P, = AD(?)
j=0
Since ®(¢) is a fundamental matrix solution satisfying ®(0)=/,, noting that e”

is also a principle matrix solution, we have by uniqueness

n—1

e =)= 7, (P, .

This completes the proof. o



