Theorem 6.8 (Properties of $\left.\Phi\left(t, t_{0}\right)\right)$ (Homework)

1) $\Phi\left(t, t_{0}\right)=\Phi(t) \Phi^{-1}\left(t_{0}\right)=\Psi(t) \Psi^{-1}\left(t_{0}\right)$;
2) $\Phi\left(t, t_{0}\right)=\Phi\left(t, t_{1}\right) \Phi\left(t_{1}, t_{0}\right)$;
3) $\Phi^{-1}\left(t, t_{0}\right)=\Phi\left(t_{0}, t\right)$;
4) $x\left(t, t_{0}, x_{0}\right)=\Phi\left(t, t_{0}\right) x_{0}$

Proof. 1) Since $\Phi\left(t, t_{0}\right)$ and $\Phi(t)$ are both fundamental matrix solutions of $x^{\prime}=A(t) x$, there exists a nonsingular matrix C such that

$$
\Phi\left(t, t_{0}\right)=\Phi(t) C .
$$

Moreover, $\Phi\left(t_{0}, t_{0}\right)=I$. Then $I=\Phi\left(t_{0}\right) C$, i.e. $C=\Phi^{-1}\left(t_{0}\right)$. Therefore,

$$
\Phi\left(t, t_{0}\right)=\Phi(t) \Phi^{-1}\left(t_{0}\right) .
$$

It is the same to show that $\Phi\left(t, t_{0}\right)=\Psi(t) \Psi^{-1}\left(t_{0}\right)$.
2) Based on 1), $\forall t, t_{0}, t_{1} \in I, ~ \Phi\left(t, t_{1}\right)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \Phi\left(t_{0}\right) \Phi^{-1}\left(t_{1}\right)=\Phi\left(t, t_{0}\right) \Phi\left(t_{0}, t_{1}\right)$.
3) $\forall t, t_{0} \in I, \Phi^{-1}\left(t_{0}, t\right)=\left\{\Phi\left(t_{0}\right) \Phi^{-1}(t)\right\}^{-1}=\Phi(t) \Phi^{-1}\left(t_{0}\right)=\Phi\left(t, t_{0}\right)$.
4) Since the solutions $x\left(t, t_{0}, x_{0}\right)$ and $\Phi\left(t, t_{0}\right) x_{0}$ satisfy

$$
x\left(t_{0}, t_{0}, x_{0}\right)=x_{0}=\Phi\left(t_{0}, t_{0}\right) x_{0},
$$

it implies that $x\left(t, t_{0}, x_{0}\right)=\Phi\left(t, t_{0}\right) x_{0}$ by uniqueness.

1. Show that $\dot{x}=A(t) x+h(t)$ has only $n+1$ linearly independent solutions, where $h(t)$ is not identically zero on $I ; A(t)$ and $h(t)$ are continuous on I.

Proof. Since $A(t)$ and $h(t)$ are continuous on I, there exists a basis $\left\{x_{j}(t), t \in I\right\} \in \Omega, j=1,2, \cdots, n$ for $\dot{x}=A(t) x$. Suppose that $x(t)$ is a particular
solution of $\dot{x}=A(t) x+h(t)$, which is guarantied by the variation of constant, i.e.

$$
x(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s .
$$

Then $x_{j}(t)+x(t)(j=1,2, \cdots, n)$ are n solutions of $\dot{x}=A(t) x+h(t)$ by Superposition Principle. Therefore, we have obtained $n+1$ solutions of $\dot{x}=A(t) x+h(t)$ given by

$$
x_{j}(t)+x(t) \quad(j=1,2, \cdots, n) \text { and } x(t), \quad t \in I .
$$

We are going to show them linearly independent on I. If

$$
\begin{gathered}
\sum_{j=0}^{n} c_{j}\left(x_{j}(t)+x(t)+c_{n+1} x(t) \equiv 0 \text { for } t \in I\right. \\
\Leftrightarrow\left\{\sum_{j=0}^{n+1} c_{j}\right\} x(t) \equiv-\sum_{j=1}^{n} c_{j} x_{j}(t) .
\end{gathered}
$$

If $\sum_{j=0}^{n+1} c_{j} \neq 0$, we have $x(t) \equiv-\left\{\sum_{j=0}^{n+1} c_{j}\right\}^{-1} \sum_{j=1}^{n} c_{j} x_{j}(t)$. This yields that $x(t) \in \Omega$ by Superposition Principle, which is not possible unless $h(t) \equiv 0$. This is a contradiction. This contradiction implies $\sum_{j=0}^{n+1} c_{j}=0$. Then, $\sum_{j=1}^{n} c_{j} x_{j}(t) \equiv 0$ for $t \in I$. Since $\left\{x_{j}(t)\right\}$ is a basis of Ω by assumption, it yields $c_{1}=c_{2}=\cdots=c_{n}=0$. Then we have $c_{n+1}=0$ by $\sum_{j=0}^{n+1} c_{j}=0$. It therefore concludes that $\left\{x_{j}(t)+x(t)\right\}$ and $x(t)$ are linearly independent. The existence is shown.

Next we show the "only". We show it by contradiction. If there exist $n+2$ linearly independent solutions $\varphi_{0}(t), \varphi_{1}(t), \cdots, \varphi_{n+1}(t)$ of $\dot{x}=A(t) x+h(t)$ for $t \in I$. Then

$$
x_{1}(t)=\varphi_{1}(t)-\varphi_{0}(t), \quad x_{2}(t)=\varphi_{2}(t)-\varphi_{0}(t), \cdots, x_{n+1}(t)=\varphi_{n+1}(t)-\varphi_{0}(t)
$$

are $n+1$ solutions of $\dot{x}=A(t) x$ for $t \in I$ by Superposition Principle. Since $\dot{x}=A(t) x$ has only n dimension, then any $n+1$ solutions, including $x_{1}(t)$, $x_{2}(t), \cdots, x_{n+1}(t)$ must be linear dependent on $t \in I$ by the fundamental theorem. Then, there exist $c_{j}(j=1, \cdots, n+1)$, not all zero, such that

$$
\sum_{j=1}^{n+1} c_{j} x_{j}(t) \equiv 0, \quad t \in I
$$

That is,

$$
\sum_{j=1}^{n+1} c_{j} \varphi_{j}(t)-\left\{\sum_{j=1}^{n+1} c_{j}\right\} \varphi_{0}(t) \equiv 0, \quad t \in I
$$

Denote $c_{0}=-\sum_{j=1}^{n+1} c_{j}$. The above equation is now $\sum_{j=0}^{n+1} c_{j} \varphi_{j}(t) \equiv 0, t \in I$. In which, $\left\{c_{j}\right\}(j=0,1, \cdots, n+1)$ are not all zero. It shows by definition that $\varphi_{0}(t)$, $\varphi_{1}(t), \cdots, \varphi_{n+1}(t)$ are linearly dependent on $t \in I$. This is a contradiction to the assumption. Therefore, $\dot{x}=A(t) x+h(t)$ has only $n+1$ linearly independent solutions on $t \in I$. The proof is finished.

2. Show that the IVP

$$
\dot{x}=A(t) x+f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

and the integral equations

$$
x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s, x(s)) \mathrm{d} s
$$

are equivalent. That is, they have the same set of solutions, where $\Phi(t)$ is a fundamental matrix solution of $\dot{x}=A(t) x$, where $A(t)$ is continuous on I and $f(t, x)$ is continuous on $I \times R^{n}$.

Proof. Suppose that $x=\varphi(t)$ is a continuous solution of the integral equations, then, $\varphi\left(t_{0}\right)=x_{0}$ and

$$
\varphi(t) \equiv \Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t) \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s
$$

Since $\varphi(t)$ is continuous and $\Phi^{-1}(t) f(t, \varphi(t))$ is continuous, we conclude that $\varphi(t)$ is differentiable. Taking derivative of t on both side of the integral equations yields

$$
\varphi^{\prime}(t) \equiv \Phi^{\prime}(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi^{\prime}(t) \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s+\Phi(t) \Phi^{-1}(t) f(t, \varphi(t))
$$

$$
\begin{aligned}
& =A(t) \Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+A(t) \int_{t_{0}}^{t} \Phi(t) \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s+f(t, \varphi(t)) \\
& =A(t)\left\{\Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t) \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s\right\}+f(t, \varphi(t)) \\
& =A(t) \varphi(t)+f(t, \varphi(t))
\end{aligned}
$$

Therefore, $x=\varphi(t)$ is a solution of $\dot{x}=A(t) x+f(t, x)$ with $\varphi\left(t_{0}\right)=x_{0}$.
Conversely, suppose that $x=\varphi(t)$ is a solution of $\dot{x}=A(t) x+f(t, x)$ with $\varphi\left(t_{0}\right)=x_{0}$. It needs to show

$$
\begin{aligned}
& \varphi(t) \equiv \Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t) \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s \\
\Leftrightarrow & \Phi^{-1}(t) \varphi(t) \equiv \Phi^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s \\
\Leftrightarrow & \Phi^{-1}(t) \varphi(t)-\Phi^{-1}\left(t_{0}\right) x_{0} \equiv \int_{t_{0}}^{t} \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s ; \\
\Leftrightarrow & \left.\Phi^{-1}(t) \varphi(t)\right|_{t_{0}} ^{t} \equiv \int_{t_{0}}^{t} \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s .
\end{aligned}
$$

The last equation can be obtained by integrating $\left\{\Phi^{-1}(t) \varphi(t)\right\}^{\prime} \equiv \Phi^{-1}(t) f(t, \varphi(t))$ from t_{0} to t.

Since

$$
\left\{\Phi^{-1}(t) \varphi(t)\right\}^{\prime}=\Phi^{-1}(t) \varphi^{\prime}(t)+\left\{\Phi^{-1}(t)\right\}^{\prime} \varphi(t)
$$

in which we need to get the expression of $\left\{\Phi^{-1}(t)\right\}^{\prime}$. To this end, it yields first

$$
0=\left\{\Phi(t) \Phi^{-1}(t)\right\}^{\prime}=\Phi^{\prime}(t) \Phi^{-1}(t)+\Phi(t)\left\{\Phi^{-1}(t)\right\}^{\prime},
$$

from the above equation, we have

$$
\left\{\Phi^{-1}(t)\right\}^{\prime}=-\Phi^{-1}(t) \Phi^{\prime}(t) \Phi^{-1}(t)=-\Phi^{-1}(t) A(t)
$$

Then,

$$
\begin{aligned}
\left\{\Phi^{-1}(t) \varphi(t)\right\}^{\prime} & =\Phi^{-1}(t) \varphi^{\prime}(t)+\left\{\Phi^{-1}(t)\right\}^{\prime} \varphi(t) \\
& =\Phi^{-1}(t) \varphi^{\prime}(t)-\Phi^{-1}(t) A(t) \varphi(t)=\Phi^{-1}(t)\left\{\varphi^{\prime}(t)-A(t) \varphi(t)\right\} \\
& =\Phi^{-1}(t) f(t, \varphi(t))
\end{aligned}
$$

Integrating on both sides of the above equation from t_{0} to t yields

$$
\left\{\Phi^{-1}(t) \varphi(t)\right\}^{\prime} \equiv \Phi^{-1}(t) f(t, \varphi(t)) .
$$

That is,

$$
\varphi(t) \equiv \Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t) \Phi^{-1}(s) f(s, \varphi(s)) \mathrm{d} s .
$$

Therefore, $x=\varphi(t)$ is a continuous solution of the integral equations. This is the end of the proof.
3. (Lecture 7) The "Putzer Algorithm" given below is another method for computing $e^{A t}$ when we have multiple eigenvalues:

$$
e^{A t}=\sum_{j=0}^{n-1} r_{j+1}(t) P_{j},
$$

where $P_{0}=I_{n}, P_{j}=\left(A-\lambda_{j} I_{n}\right)\left(A-\lambda_{j-1} I_{n}\right) \cdots\left(A-\lambda_{1} I_{n}\right), j=1,2, \cdots, n$, and $r_{j}(t)$, $j=1,2, \cdots, n$, are the solutions of the first-order linear differential equations and initial conditions

$$
\begin{aligned}
& r_{1}^{\prime}(t)=\lambda_{1} r_{1}(t) \text { with } r_{1}(0)=1 \\
& r_{2}^{\prime}(t)=\lambda_{2} r_{2}(t)+r_{1}(t) \text { with } r_{2}(0)=0 \\
& \cdots ; \\
& r_{n}^{\prime}(t)=\lambda_{n} r_{n}(t)+r_{n-1}(t) \text { with } r_{n}(0)=0
\end{aligned}
$$

Proof. Denote $\Phi(t)=\sum_{j=0}^{n-1} r_{j+1}(t) P_{j}$. Then, $\Phi(0)=\sum_{j=0}^{n-1} r_{j+1}(0) P_{j}=r_{1}(0) P_{0}=I_{n} \quad$ with $\operatorname{det} \Phi(0)=1 \neq 0$. It remains to show that $\Phi(t)$ satisfies $\Phi^{\prime}(t)=A \Phi(t)$ by uniqueness. Let $r_{0}(t)=0$ for simplicity. Then,

$$
\Phi^{\prime}(t)=\sum_{j=0}^{n-1} r_{j+1}^{\prime}(t) P_{j}=\sum_{j=0}^{n-1}\left(\lambda_{j+1} r_{j+1}(t)+r_{j}(t)\right) P_{j} .
$$

On the other hand,

$$
\begin{aligned}
A \Phi(t) & =\sum_{j=0}^{n-1} r_{j+1}(t) A P_{j}=\sum_{j=0}^{n-1} r_{j+1}(t)\left\{\left(A-\lambda_{j+1} I_{n}\right)+\lambda_{j+1} I_{n}\right\} P_{j} \\
& =\sum_{j=0}^{n-1} r_{j+1}(t)\left(A-\lambda_{j+1} I_{n}\right) P_{j}+\sum_{j=0}^{n-1} \lambda_{j+1} r_{j+1}(t) P_{j} \\
& =\sum_{j=0}^{n-1} r_{j+1}(t) P_{j+1}+\sum_{j=0}^{n-1} \lambda_{j+1} r_{j+1}(t) P_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n-1} r_{j}(t) P_{j}+\sum_{j=1}^{n-1} \lambda_{j+1} r_{j+1}(t) P_{j}+r_{n}(t) P_{n}+\lambda_{1} r_{1}(t) P_{0} \\
& =\sum_{j=1}^{n-1}\left(\lambda_{j+1} r_{j+1}(t)+r_{j}(t)\right) P_{j}+r_{n}(t) P_{n}+\left(\lambda_{1} r_{1}(t)+r_{0}(t)\right) P_{0} .
\end{aligned}
$$

By Hamilton-Caylay Theorem in Linear Algebra, we know that

$$
P_{n}=\left(A-\lambda_{n} I_{n}\right)\left(A-\lambda_{n-1} I_{n}\right) \cdots\left(A-\lambda_{1} I_{n}\right)=O_{n \times n} .
$$

Therefore,

$$
\Phi^{\prime}(t)=\sum_{j=0}^{n-1}\left(\lambda_{j+1} r_{j+1}(t)+r_{j}(t)\right) P_{j}=A \Phi(t)
$$

Since $\Phi(t)$ is a fundamental matrix solution satisfying $\Phi(0)=I_{n}$, noting that $e^{A t}$ is also a principle matrix solution, we have by uniqueness

$$
e^{A t} \equiv \Phi(t)=\sum_{j=0}^{n-1} r_{j+1}(t) P_{j} .
$$

This completes the proof.

